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Abstract Interest in protecting ecological areas is

increasing because of land uses conflicts and environ-

mental pressures. The optimal zoning of protected

ecological areas belongs to a NP-hard problem

because it is subject to both box and spatial con-

straints. A challenge in solving area optimization

problems emerges with the increasing size of a study

region. In this article, an integrated approach of remote

sensing, GIS and modified ant colony optimization

(ACO) is proposed for application in zoning protected

ecological areas. Significant modifications have been

made in the conventional ACO so that it can be further

extended to solve zoning problems in large regions.

An improved selection strategy is designed to accel-

erate the progress of sites selection for artificial ants.

Another important modification in ACO is to incor-

porate the neighborhood diffusion strategy into pher-

omone updating. The optimal objective is to generate

protected areas that maximize both ecological suit-

ability and spatial compactness. The modified ACO

model has been successfully applied to a case study

involving an area of 25,483 cells in Dongguan,

Guangdong, China. The experiments have demon-

strated that the proposed model is an efficient and

effective optimization technique for generating opti-

mal protection. The modified ACO model only

requires approximately 119 s for determining near-

optimal solutions. Furthermore, the proposed method

performs better than other methods, including simu-

lated annealing, genetic algorithm, iterative relaxa-

tion, basic ACO, and density slicing.

Keywords Remote sensing � GIS � ACO �
Zoning � Protected ecological areas

Introduction

Land-use changes in China have been dominated by

unprecedented urban transformation since the launch

of economic reform and the open-door policy in 1978

(Yeh and Li 1999). This transformation is particularly

true in numerous coastal regions and cities, such as the

Pearl River Delta. Urban areas expanded by more than

300% between 1988 and 1996 (Seto et al. 2002). As

urban areas expand, natural ecosystems, farmland,

water and vegetation are converted into urban areas.

Rampant urban growth has resulted in a series of

environmental and ecological problems, including

encroachment of agricultural land, local and regional

climate change, destruction of sensitive ecosystems,
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loss of wildlife habit and biodiversity, water and air

pollution, soil erosion, and severe flooding because of

the lack of appropriate land-use planning (Seto et al.

2002; Li and Liu 2008). These problems have had a

significant impact on sustainable land development.

As a method for reducing the problems associated

with land conversion and development, the establish-

ment of a system of protected ecological areas can serve

the purposes of conservation of species and ecosystem

diversity, preservation of ecological processes, protec-

tion of agricultural land, limitation of natural resource

exploitation, and promotion of scientific activities and

recreation (Snyder et al. 2005; Verdiell et al. 2005).

In China, the zoning of protected ecological land

areas has been implemented in fast-growing regions,

such as Shenzhen (Environmental Department of

Shenzhen 2008). Disorderly urban development has

been effectively controlled after protected areas were

officially demarcated. For example, illegal buildings

were put to an end in Yantian District of Shenzhen in

the past 2 years. The protected areas play an important

role in solving and preventing the land use problems,

such as excessive urban development and increasing

eco-environmental pressures.

Difficult decisions must be made to evaluate the

trade-offs among ecological protection goals, eco-

nomic development, and spatial constraints. Empirical

studies have shown that urban land expands by 3%

when the economy, measured by the gross domestic

product, grows by 10% in China (Deng et al. 2008).

Land consumption is required to accommodate the

growing population shifting from rural to urban and

the expanding economic activities (Kuznets 1966). A

fragment pattern will be produced without incorpo-

rating spatial constraints in the protection zoning. An

ongoing dilemma in the design of protected areas is

whether the spatial pattern of selected sites is compact

(Diamond et al. 1976). A compact protection may

enhance the long term persistence of species (Önal and

Briers 2002). Under this situation, zoning is a complex

multi-objective optimization problem because a trade-

off is inevitably involved (Carsjens and Van der

Knaap 2002). To date, zoning methods applied to

protected areas are mostly qualitative and rely heavily

on the involvement of subject experts in developing

countries (Verdiell et al. 2005). Planners need a

quantitative and effective tool to evaluate alternative

ecological protection plans in terms of achieving

intended objectives measured against costs.

A number of quantitative zoning methods have been

developed over the past two decades. An initial

approach to the problem is to select the set of sites

with the highest suitability up to the fulfillment of the

land demand (Geneletti and van Duren 2008). How-

ever, zoning based on the ranking of suitability values

without considering spatial constraints will result in the

fragmentation of protected areas. Mathematical tech-

niques, such as integer programming (IP) and mixed-

integer programming (MIP), are the most commonly

used methods for zoning protected areas (Church et al.

2003). Cocks and Baird (1989) applied IP to address

the multiple reserve selection problems in South

Australia. Hof and Joyce (1993) developed a MIP

approach for spatially optimizing wildlife and timber

in managed forest ecosystems. These techniques can

ensure optimal solutions, but noting that mathematical

techniques may not yield a solution within a reasonable

amount of time. To overcome this issue, researchers

resort to heuristic algorithms that are more efficient to

solve complex optimization problems (Xiao et al.

2007). A common heuristic for solving these zoning

problems is based on the well-known simulated

annealing (SA) algorithm (Bos 1993; Verdiell et al.

2005). For example, Possingham et al. (2000) pre-

sented a modified SA method that incorporated spatial

considerations into a reserve network design. Verdiell

et al. (2005) developed an SA method for the zoning of

protected natural areas subject to both box and spatial

constraints. However, most of these methods are

primarily applied to the spatial data with coarse

resolutions. For example, Bos (1993) used the SA

algorithm to create forest management zones with an

area of only 83 cells. Verdiell et al. (2005) applied the

SA method to select and design a national park, but the

study region has an area of only 900 cells. The

challenge lies in solving zone allocation problems with

an increase in the size of the study area. Thus, exploring

efficient and effective optimization methods for zone

allocation in large areas is academically interesting and

may also result in useful practical applications.

This research proposes an approach based on the

integrated use of remote sensing, GIS and swarm

intelligence for the zoning of protected ecological

areas. The zoning of protected areas usually involves

an analysis of a large amount of spatial data. The

integration of remote sensing and GIS can provide the

tools and data required for such a purpose. Remote

sensing data can be used to obtain information on land
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use, vegetation indices and water indices. GIS is

capable of generating spatial variables, such as slope,

elevation, traffic accessibility, and habitat diversity.

Furthermore, GIS is used to overlay these spatial

variables to create a composite map that acts as an

ecological suitability map. Then, swarm intelligence is

designed to generate protected ecological areas based

on the suitability map. As a bottom-up approach,

swarm intelligence (SI) is a complex multi-agents

system, consisting of numerous simple individuals

(e.g., ants, birds, and so on), which exhibit their swarm

intelligence through coordination and competition

among the individuals (Liu et al. 2008a). SI mainly

involves two algorithms, namely, ant colony optimi-

zation (ACO) and particle swarm optimization (PSO).

In this article, ACO is attempted to be introduced into

the solution of area optimization problems. ACO, a

computational method inspired by observations of the

behavior of real ants, was first proposed by Dorigo

(1992). This algorithm is composed of a set of simple

artificial ants that cooperate through self-organization.

Studies indicate that ACO has better performance than

other nature-inspired algorithms, such as SA and

evolutionary computations, in solving complex com-

binatorial optimization problems, because the mech-

anism of pheromone updating is effective for finding

the optimal solutions using cooperating artificial ants

(Dorigo and Gambardella 1997). In recent years, ACO

algorithms have been used successfully to solve

geographical problems, such as urban simulation

(Liu et al. 2008b), remote sensing classification (Liu

et al. 2008c), and path-covering optimization (Li et al.

2009a). Previous studies have demonstrated that ACO

is a potentially useful algorithm for tackling complex

spatial optimization problems.

In this article, conventional ACO will be modified

so that it can be adapted to the solution of zoning

problems. It is expected that the positive feedback

mechanism of ACO can produce better performance in

handling complex, heterogeneous spatial data for the

search of an optimal solution. The proposed ACO

method is used to generate protected ecological areas

in Dongguan, a rapidly growing region in the Pearl

River Delta, China. Finally, the modified ACO method

will be compared with other methods, such as SA,

genetic algorithm (GA), iterative relaxation (RI), basic

ACO, and density slicing (DS), in terms of perfor-

mance in area optimization.

ACO algorithm for the zoning of protected

ecological areas

ACO for the traveling salesman problem (TSP)

ACO is a novel heuristic approach for the solution of

combinatorial optimization problems. The optimiza-

tion is carried out by simulating the natural behavior of

ant colonies in their search for food, including

mechanisms of cooperation and adaptation (Dorigo

1992). When searching for food, ants initially explore

the area surrounding their nest in a random manner. As

soon as an ant finds a food source, it deposits some

pheromone to mark the path between the nest and the

food source. The quantity of pheromone may depend

on the quantity and quality of the food. Other ants can

detect the pheromone trail and are attracted to follow

it. Pheromone evaporates with time, so the pheromone

on a long path will decrease when fewer ants select it.

The shorter path is reinforced, and more ants are

attracted to follow the trail, resulting in an increase in

the quantity of pheromone on the shorter path. In this

way, ants can find the shortest route from their nest to

food sources through the communication.

ACO was first applied to the well-known travel-

ing salesman problem (TSP), which is to find the

shortest tour between N cities, visiting each only

once and ending at the starting point (Dorigo and

Gambardella 1997). In the algorithm, an artificial

ant selects a city to visit with a probability that is

determined by the following equation (Dorigo and

Gambardella 1997):

pk
ghðtÞ

¼
sghðtÞ
� �a� gghðtÞ

� �b

P
s2allowedk

sgsðtÞ
� �a� ggsðtÞ

� �b ; if h 2 allowedk

0 otherwise

8
>><

>>:

ð1Þ

where pk
ghðtÞ is the transition probability from city g to

h for the kth ant at time t, sghðtÞ is the amount of

pheromone on edge (g, h), gghðtÞ is a heuristic function

which is defined as the inverse of the distance between

cites g and h, and allowedkis a set of the cites that can

be selected by the kth ant at city g for the next step. The

relative weight of the pheromone trail and the heuristic

value are controlled by the parameters a and b.
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After all ants have completed their tour, the

intensity of pheromone is updated based on the

following equations (Dorigo et al. 1996):

sghðt þ 1Þ ¼ ð1� qÞ � sghðtÞ þ DsghðtÞ ð2Þ

DsghðtÞ ¼
Xm

k¼1

Dsk
ghðtÞ ð3Þ

Dsk
ghðtÞ ¼

Q

Lk
if the kth ant visits ðg; hÞ

0

8
<

:
ð4Þ

where q 2 ð0; 1� is the pheromone trail decay coeffi-

cient, DsghðtÞ is the increment of sghðtÞ, Dsk
ghðtÞis the

pheromone trail deposited by the kth ant on edge (g,

h) at time t, m is the number of ants, Q is a constant,

andLk is the total length or cost of current tour traveled

by the kth ant.

Formulation for the zoning of protected ecological

areas

According to the criteria of ecological protection,

there are two planning objectives for the utility of a

protected pattern. First, it is expected that the

optimal protected pattern should yield the highest

values for the average total ecological suitability.

Second, compact configuration is always more

desirable than fragmented protection. The conserva-

tion biology theory indicates that compact arrange-

ments can protect a larger, contiguous habitat area

and may be more effective for some species than

unconnected sites (Reid and Murphy 1995). Fur-

thermore, reducing site fragmentation may mitigate

the effects of human activity and can facilitate the

management of protected areas (Diamond et al.

1976; Morris 1991; Murcia 1995). Thus, the zoning

protection problem can be expressed using the

following Eqs.:

Maximize
X

i

Suitixi ð5Þ

Maximize Ce ð6Þ

Ce ¼
LMaxSum � LSum

LMaxSum � LMinSum

ð7Þ
X

i

xi ¼ Q ð8Þ

xi ¼
1if the cell i is included in the protection

0 otherwise

(

ð9Þ

where Suiti is the ecological suitability of cell i, Ce is

the compactness index of a protected pattern, and

LSumis the sum of perimeter of a protected scenario.

Once the area is known, the most compact form would

be circular and the minimum sum of perimeter

(LMinSum) can then be calculated. On the contrary, if

the selected sites are separate from each other, the

maximum sum of perimeter LMaxSum can then be

obtained. Q is the total area of protection. Generally, a

simple additive weighting method is employed to

create a composite score for solving a multi-objective

problem. Accordingly, the utility of protection can be

defined as follows:

Utility ¼ ws � Se þ wc � Ce 8 ws þ wc ¼ 1 ð10Þ

Se ¼
P

i Suitixi

Q
ð11Þ

where Se is the average total ecological suitability, ws

is the weight of ecological suitability, and wc is the

weight of compactness.

Ecological suitability serves as an important aid for

zoning protection, and it can be estimated from a series

of spatial variables (factors) that are retrieved from

remote sensing and GIS data (Eastman et al. 1998).

These factors include:

(1) The normalized difference vegetation index

(NDVI)

Vegetation indices are commonly used for mon-

itoring vegetation biomass and forecasting crop

production. Many studies indicate that vegetation

indices are well correlated with various vegetation

properties including green leaf area, biomass, veg-

etation abundance, gross primary productivity, and

photosynthetic activity (Sellers 1985; Huete 1988).

NDVI is very sensitive to vegetation. In areas with

more vegetation and better growth, the values of

NDVI will be higher, and the ecological benefits

will be better. Similarly, in areas with less vegeta-

tion and poorer growth, the values of NDVI will be

smaller. Therefore, NDVI can be used as an

important indicator for ecological suitability analy-

sis. NDVI is calculated according to the following

equation (Tucker 1979):
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NDVI ¼ TM4� TM3

TM4þ TM3
ð12Þ

(2) Modified normalized difference water index

(MNDWI)

An important task in ecological conservation is the

protection of water resources in densely populated

areas. The aquatic natural areas that are important for

water quality and supply should be included in the

protection. The identification of aquatic natural areas

is the most important step for such protection. The

Normalized Difference Water Index (NDWI) was first

proposed by McFeeters (1996). This index can help

separate water class from other land use classes in

thematic mapper (TM) satellite images. The modified

normalized difference water index (MNDWI) was

further proposed by the substitution of a middle

infrared band for the near infrared band so that water

features can be efficiently enhanced (Xu 2006).

MNDWI can be expressed as follows:

MNDWI ¼ TM2� TM5

TM2þ TM5
ð13Þ

(3) Urban development potential

The potential of urban development should also be

considered because ecological conservation should

not completely hinder future economic development.

Furthermore, ecological protection could be subject to

the stress from the activities of adjacent human-

dominated landscapes. Negative effects emerge if the

selected site is close to an area that has high potential

for urban development. Therefore, development

potential is regarded as a negative factor for conser-

vation, and it can be estimated using the following Eq.:

Sdev ¼ b1DDistrict þ b2DTowns þ b3DRailways

þ b4DExpressways þ b5DRoads þ b6Slope ð14Þ

where DDistrict is the distance to district centre, DTownsis

the distance to towns, DRailways is the distance to

railways, DExpressways is the distance to expressways,

DRoads is the distance to roads, and bu(u = 1, 2, …6) is

the weight of each variable and is subject to

b1 þ b2 þ b3 þ b4 þ b5 þ b6 ¼ 1.

(4) Habitat heterogeneity

Habitat heterogeneity can be used to estimate the

spatial distribution pattern of the heterogeneous envi-

ronmental conditions of the study area (Svoray et al.

2005). Local species richness has long been known to

be influenced by habitat heterogeneity (Goetz et al.

2007). Hence, an increase in habitat types will result in

more species. Moreover, many studies indicate that

ecological diversity should increase significantly with

habitat heterogeneity on the landscape scale (Fahr and

Kalko 2011). The habitats of land units are generally

composed of three variables, including wetness index,

slope orientation, and soil attributes. The wetness

index is calculated using Eq. 15, which represents the

ratio between flow accumulation and loss of moisture

in a given cell:

Wetness index ¼ ln
Asi

tan b

� �
ð15Þ

where Asi is the specific catchment area (the upslope

contributing area), which can be calculated using the

ArcGIS 9.3 flow accumulation, andtan b is the tangent

of the slope angle of the surface (Barling et al. 1994).

The slope orientation can be obtained using the

ArcGIS 9.3 spatial analyst function. The detailed

map of soil attributes was prepared based on field

surveys and expert knowledge. Habitat heterogeneity

was calculated using the Shannon–Weaver Index:

Hh ¼ �
X

j

Pjðln PjÞ ð16Þ

where Pj is the relative abundance of each individual

habitat, which can be calculated based on 16 cells that

occupy the grid.

The multi-criteria evaluation (MCE) (Eastman

et al. 1998) method is used to estimate the ecological

suitability according to the above mentioned spatial

variables, which should be standardized within the

range of [0, 1]. The total score of ecological suitability

was calculated using a weighted linear combination

method (Malczewski 2006):

Se ¼ w1 � NDVIþ w2 �MNDWIþ w3ð1� SdevÞ
þ w4 � Hh

ð17Þ

where w1, w2,w3, and w4 are the weights for each

factor, and the total of all the criterion weights is equal

to 1.
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Modified ACO algorithm for zoning protection

ACO is a meta-heuristic technique that uses artificial

ants to find solutions to combinatorial optimization

problems (Dorigo et al. 1996). Recently, ACO has

been modified to solve complex point and path

optimization problems by using a rich set of spatial

information (Li et al. 2009a, 2009b). This article

further modifies and extends the ACO algorithm to

solve zoning protection problems in large areas.

Figure 1 illustrates the procedure of zoning protected

ecological areas by integrating remote sensing, GIS

and modified ACO. Remote sensing data can be used

to obtain the information of vegetation indices and

water indices. GIS can provide the tools for the

analysis of a large amount of spatial data. Modified

ACO is designed to form protected ecological areas

based on suitability map. The detailed modifications of

ACO for solving zoning protection problem are

provided in the following sections.

Solution construction

In forming protected ecological areas, artificial ants

are randomly positioned in the study region at the start

of optimization. Artificial ant will visit a cell and lay

down pheromone on the cell, the amount of deposited

pheromone is related to the total utility of this cell in

forming the entire protected ecological areas. The

utility of protection is composed of ecological

Fig. 1 The procedure of

zoning protected ecological

areas by integrating remote

sensing, GIS and modified

ACO

452 Landscape Ecol (2012) 27:447–463

123



suitability and compactness. The larger the amount of

pheromone, the more the ants will be attracted to select

this cell. A larger amount of pheromone is in turn

deposited on the cell. The solution is constructed after

all ants have located their best sites.

Improved selection strategy

Sites selection is an important step for ants in the

formation of protection areas. The probability that a

cell i will be selected by the kth ant at time t is modified

according to Eq. 1:

pk
i ðtÞ ¼

siðtÞ½ �a� giðtÞ½ �b
P

x2allowedk
sxðtÞ½ �a� gxðtÞ½ �b

; if i 2 allowedk

0 otherwise

8
><

>:

ð18Þ

where allowedk represents the tabu list, which is

defined to mask out the selected cells which should not

be visited again by other ants.

A heuristic function is designed to guide the path

searching of artificial ants so that the computation time

is significantly reduced. In this paper, the heuristic

function siðtÞ is incorporated into the ecological

suitability at cell i to guide the walking of ants. An

artificial ant is more likely to select a cell with a higher

suitability value so that a plausible protection area can

be formed. Therefore, the heuristic function is defined

as follows:

gi ¼
SuitiP
x Suitx

ð19Þ

where Suiti is the ecological suitability at cell i, andP
x Suitx is the sum of the suitability for all cells in the

study area.

According to the selection probability, ants select a

site through the roulette wheel selection technique,

which can be achieved using random pointers.

Assuming there are four grids with the probabilities

of being chosen as 0.1, 0.2, 0.3 and 0.4, respectively,

the sum of the probability is 1 (Fig. 2). The cumula-

tive probabilities are obtained by summing up the

selection probability of these four grids, that is, 0.1,

0.3, 0.6 and 1. A random number between 0 and 1

representing the pointer, saying 0.7, is generated and

compared with the cumulative probabilities. If the

cumulative probability of the first n grids is greater

than 0.7, then the n-th grid is selected. In this example,

the cumulative probability of the first four grids is

greater than 0.7 and hence the fourth grid is selected.

If the random number generated is 0.45, then the third

grid is selected, as shown in Fig. 2.

In the basic TSP algorithm, a random number is

generated for one ant to select a city. When an ant is

deciding which city to visit at the current step, the

selection probability of all cities excluded by the tabu

list are accumulated until the sum exceeds the value of

a pre-generated random number. This procedure will

be executed each time when an ant selects a new city to

visit. Therefore, if the number of city is set as m, an ant

visiting all cities requires the implementation of such

selection procedure for m-1 times. Apparently, this

selection strategy requires intensive computation, so it

is, thus, inadequately efficient.

In this study, a more efficient strategy is designed to

select sites for artificial ants. In this improved selection

strategy, a set of m random numbers instead of one are

generated in one time for all ants, and the sequencing of

the selection probability is executed before accumula-

tion. Taking the previous example in Fig. 2, two

random numbers are simultaneously generated, say

0.45 and 0.7. The selection probability of each grid is

then sorted in ascending order, and the cumulative

probabilities are then calculated. The cumulative

probability of the first three grids is 0.6, which is

greater than 0.45, so the third grid is selected. On the

other hand, the cumulative probability of the first four

grids exceeds 0.7 and is also selected. Using this

strategy, the selection can be accomplished within only

one round of accumulation. Compared with the basic

selection strategy, the improved strategy is more

efficient, especially when a large number of sites are

involved.

Modified pheromone updating mechanism

Pheromone updating is the core of ACO for spatial

optimization. Some modifications in pheromone

0. 70. 45

0. 1 0. 2 0. 3 0. 4

Fig. 2 Sites selection through the roulette wheel selection

technique
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updating mechanism are designed to address zoning

protection problem. Firstly, it is important to incorpo-

rate the utility function in ACO so that the protected

area can be formulated using the ant algorithm. The

variable, 1
Lk

, in Eq. 4 can then be replaced by the utility

of the ecological protection. Another important mod-

ification is to introduce the strategy of neighborhood

pheromone diffusion. This technique is conducted by

incorporating a distance decay function in pheromone

updating. Therefore, Eq. 4 should be modified as

follows:

where d(x) is the distance from the central cell (i), and

is used to address the effects of neighborhood on site

selection. A site should have a higher probability of

being selected if its neighbors have already been

included in the protection.

Model implementation and results

Study area and spatial data

Dongguan City in the Pearl River Delta has been

selected for the testing of the proposed model to solve

a practical problem, that is, the zoning of protected

ecological areas. The city is along the corridor

between Guangzhou and Shenzhen (Fig. 3), with a

total area of 2,465 square kilometers. A large amount

of agricultural land has been converted into urban

areas in Dongguan. A series of environmental and

ecological problems driven by rapid urban develop-

ment in this region have been reported in many studies

(Yeh and Li 1997; Seto et al. 2002). There is an urgent

demand to establish protected ecological areas to

sustain the environmental quality and the ecological

functions for human welfare and further development.

In this article, the previously mentioned ACO-based

model described is applied to establish ecological

conservation areas in Dongguan City.

A satellite Landsat TM image of Dongguan

acquired on March 04, 2008 was classified to obtain

land use information. Then, NDVI and MNDWI of the

study aera were calculated using the Landsat TM

Image. Then, 30-m DEM data is used to produce the

slope, wetness index and slope orientation of the

region. The soil associations of the study area were

classified into 13 categories based on field surveys and

expert knowledge. Then, habitat heterogeneity is

obtained by integrating wetness index, slope orienta-

tion and soil attributes based on Eq. 16. Five proxim-

ity variables (distance to district, distance to towns,

distance to railways, distance to expressways, and

distance to roads) and slope are used to produce the

potential of urban development. All these spatial

variables (factors) are converted into a raster format

using GIS techniques (Fig. 4).

Ecological suitability analysis

Suitability analysis is the process to determine

whether the land resource is suitable for some specific

use (Steiner et al. 2000). This type of analysis involves

a number of spatial variables (factors) which evaluate

the suitability score. The weights for each variable

should be decided according to expert experiences and

domain knowledge. A common method is adopting

Saaty’s pairwise comparison to obtain these weights

(Eastman et al. 1998). Table 1 shows the weights of

different factors as suitability evaluation indicators. A

consistency ratio was used to examine the consistency

of the matrix. The weight matrix should be re-

evaluated if the ratio value is greater than 0.10.

Figure 5 demonstrates the final ecological suitability

map, which was created by integrating the above

mentioned spatial variables and weights using the

ArcGIS 9.3 spatial overlay analyst function. This

suitability map servers as an important aid for

optimizing spatial pattern of protected areas.

Dsk
xðtÞ ¼

Q� Utility

dðxÞ þ 1
; if x falls within 5� 5 window of cell i at time t

0 otherwise

8
<

:
ð20Þ
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Zoning protected areas using modified ACO

The modified ACO model was used to search for the

optimal pattern for the protected ecological area. This

optimization model involves some parameters, which

could affect the optimization results. In Eq. 18, the

parameters of a and b control the relative weight of the

pheromone trail and the heuristic value. These param-

eters should be defined before running the model as

they directly affect the results of optimization. There-

fore, the key lies in how to determine the parameters of

a and b in order to improve the optimization utility. A

greedy search strategy is designed to determine these

parameters. We assigned values to parameter a from

0.5 to 10, with increments of 0.5. Parameter b was

varied between 0.25 and 5, with increments of 0.25.

Then, the average utility value of the formed protection

is calculated with different combinations of (a, b).

Once the average utility value reaches its maximum,

the values of a and b are considered as the optimal

parameter settings. Figure 6 illustrates the utility value

obtained using different combinations of a and b
values with running the ACO model for 1,000 itera-

tions. As shown in Fig. 6, when a[ 2, the utility value

does not appear to be sensitive to the choice of a; and

differences along parameter a are relatively insignif-

icant. When a takes small values (i.e., a varies from 0 to

2), the utility value is very sensitive to parameter a, and

it is relatively small. When a[ 2 and b\ 1, the

modified ACO model can obtain a relatively high

utility value. In the experiment, the maximum value of

average utility was 0.67151 when a = 8 and b = 0.75.

These parameter settings (a = 8, b = 0.75) were then

used to optimize protected areas in Dongguan.

Fig. 3 Location of

Dongguan in the Pearl River

Delta
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The required area for protection is set to be 880

square kilometers with reference to the strategic plan-

ning of Dongguan. The weights for the average total

ecological suitability and the compactness in Eq. 10 are

both assigned as 0.5. Figure 7 illustrates the optimiza-

tion process for the spatial patterns of protection by

using modified ACO model. At the initial stage, artificial

ants are randomly located in the study area. As the

iteration continues, these ants will explore the space and

try to find the best locations through cooperation and

Fig. 4 Various spatial

variables for suitability

analysis using remote

sensing and GIS data

Table 1 Weights for calculating ecological suitability

Factors NDVI MNDWI Development

potential

Habitat

heterogeneity

Weights 0.345 0.155 0.286 0.214

Fig. 5 Ecological suitability map of Dongguan

Fig. 6 Utility values obtained using different combinations of

parameters (a, b) settings
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interaction. The formed patterns become more and more

compact because of the feedback effects of ants. It is

found that artificial ants have almost occupied the best

locations only after 500 iterations. The spatial pattern

becomes stabilized when the iteration reaches approx-

imately 1,000. As illustrated in Fig. 7, the final

optimized pattern clearly shows that each artificial ant

is allocated at the sites with high ecological suitability

and the spatial form is very compact.

As shown in Fig. 8, the value of the utility function

will increase significantly during the initial stage. The

utility value will become stabilized when the iteration

is greater than 400. The optimization spends about

only 119 s when using a computer with a Pentium IV

3.2 GHz CPU.

Similar to other heuristic methods, the ACO

algorithm may be affected by some randomness. It is

necessary to carry out optimizations for several times

to determine whether ACO can produce stable results.

To test the robustness of the modified ACO model, the

optimization is repeated ten times. Then, the variance

of utility value under different optimization processes

is calculated. The variance, which can provide a way

to measure the robustness of the ACO model, is

defined as follows:

Vt ¼ ð1=TÞ
XT

i¼1

ðUi
t � U

_

tÞ2 ð21Þ

where Vt is the variance of the utility value for the tth

iteration with different optimization times, T is the

number of optimization times (here T = 10), U
_

t is the

mean utility value of the tth iteration under optimiza-

tion times, and Ui
t represents the utility value of the tth

iteration for the ith optimization.

Then, the mean variance of all iteration is calcu-

lated to measure the robustness of the ACO model:

Fig. 7 The optimization

process of protection spatial

patterns by using modified

ACO model
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Fig. 8 Utility improvements with iterations by the modified

ACO model
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MV ¼
XI

t¼1

Vt

I
ð22Þ

where I is the number of iteration times.

Figure 9 shows the variance of the utility value with

iterations using the modified ACO model. The

variance value is not stabilized during the initial stage.

However, the variance value is almost equal to 0 after

the iteration is greater than 400. The MV value of

modified ACO model is 0.000013. A smaller MV

value indicates that the optimization model is more

stable. The above analysis shows that the robustness of

the ACO model is good.

Finally, the overlapping of the zoning results is

examined. As shown in Fig. 10, there are only small

non-overlapping areas in the fringe of the formed

protection. The overlapping areas account for a

considerable proportion at 89.66%. The good over-

lapping indicates that the modified ACO model can

produce quite stable results for forming protected

areas.

A further experiment was conducted to compare the

performances of the modified ACO model with those

of the five algorithms: (a) the simulated annealing

(SA) (Verdiell et al. 2005); (b) the genetic algorithm

V
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Fig. 9 The variance of utility value with iterations by the

modified ACO model

Fig. 10 Overlay of the

optimization results by

repeatedly running modified

ACO ten times
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(GA) (c) the iterative relaxation (RI) (Eastman et al.

1995); (d) the basic ACO model; and (e) the density

slicing (DS) (Li and Yeh 2001). The performance of

these four methods is compared based on the average

total utility using the same dataset so that their

performances can be compared with that of the

modified ACO model.

The SA method is a well-known heuristic algorithm

that has been widely used to solve combination

optimization problems. At the beginning of the

procedure, initial locations of sites, which are com-

posed of the protected areas (solution), were randomly

generated, and the initial value of the utility function

was calculated. Then, a small change was made to the

current solution and the utility value of new solution

was obtained. If the new utility value is greater than the

previous, then the new solution is accepted; otherwise,

the new solution is accepted on a random basis as

specified by the Metropolis procedure (Kirkpatrick

et al. 1983).

Fig. 11 Zoning of

protected ecological areas

using modified ACO, SA,

GA, IR, basic ACO and DS

methods

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 100 200 300 400 500 600 700 800 900 1000

SA GA Basic ACO

Fig. 12 Utility values with iterations by using SA, GA and

basic ACO

Table 2 Comparison of the MV value and the computation time using the modified ACO, SA, GA and basic ACO

Modified ACO SA GA Basic ACO

MV value 0.000013 0.000380 0.000017 0.000021

Time(s) 119 3383 864 1558

Fig. 13 Boxplot of the utility value for modified ACO, SA, GA

and basic ACO
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The concept of GA was developed by Holland

(1975). The genetic algorithm adopts an evolutionary

process to solve optimization problems based on the

natural selection theory. GA and ACO both work with

a number of initial solutions, the so-called population,

which is usually randomly generated. Then new

solutions are created by applying a series of genetic

operators (selection, crossover, mutation and replace-

ment). GA has been proven excellent in quickly

finding solutions for complex optimization problems

(Mitchell 1996).

The RI method can be implemented using the

following steps (Eastman et al. 1995): First, all cells

with a suitability value greater than an initial threshold

are selected. Then, spatially discontinuous cells are

removed, and contiguous groups of feasible cells are

considered to be candidate regions. Third, candidate

regions having an area less than that of the minimum

size are also removed. The remaining candidates meet

both the suitability and size requirements. Finally, the

above processes are repeated until the utility improve-

ment becomes stabilized. This method can be used to

generate feasible alternatives, but it does not generate

regions with a given size.

The basic ACO model also incorporates the utility

function by addressing the criteria of natural protec-

tion, which involves the average total ecological

suitability and the compactness of the pattern. The

values of parameters settings (a, b) in the basic ACO

model are similar to that of the modified ACO model

so that their performances can be compared. However,

the neighborhood pheromone diffusion strategy and

the improved selection strategy are not adopted in this

basic ACO algorithm.

The DS method is based only on the ranking of

suitability values by slicing the density of suitability

score (Li and Yeh 2001). Cells with higher suitability

values are selected to establish the protected areas.

The DS method is very simple to implement, but the

spatial constraint cannot be considered in this method.

The zoning results of the above mentioned

approaches are shown in Fig. 11a–f. Figure 12 shows

the utility values with iterations by using SA, GA and

basic ACO. It indicates that GA can achieve conver-

gence more quickly than SA and basic ACO. As

shown in Table 2, the values of MV for modified ACO,

SA, GA and basic ACO are 0.000013, 0.000380,

0.000017 and 0.000021, respectively. The values of

MV for modified ACO, GA and basic ACO are very

small, which indicates that these three methods are

robust. Then, utility and compactness values for

modified ACO, SA, GA and basic ACO were

computed in ten runs. Matlab7.0 was used to create

boxplots of utility and compactness (Figs. 13, 14),

which show no outliers for modified ACO, GA and

basic ACO. However, some outliers are identified in

the boxplots for the SA method. This indicates that the

optimization results of SA are unstable.

Table 3 depicts the obtained utility values and

compactness of these six methods. As illustrated in

Fig. 11 and Table 3, the modified ACO model can

generate protected areas with a maximum utility value

and compact pattern. GA and SA also can obtain good

performances in terms of the utility value and spatial

pattern. However, GA and SA require a significantly

Fig. 14 Boxplot of compactness for modified ACO, SA, GA

and basic ACO

Table 3 Comparison of the utility value and compactness using modified ACO, SA, GA, IR, basic ACO and DS methods

Modified ACO SA GA IR Basic ACO DS

Utility value 0.67509 0.65969 0.67214 0.63928 0.60803 0.59832

Compactness 0.91553 0.87010 0.90628 0.80005 0.70220 0.68288
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longer computation than the modified ACO model

(Table 2). The computation time for the modified

ACO method only amounts to 3.52 and 13.77% of

those of the SA and GA methods, respectively. The RI

method generally has the capability to derive suitable

and continuous area (Fig. 11c). However, the spatial

pattern of this method is less compact than that of

modified ACO and GA (Table 3). Neither the basic

ACO method nor the DS method achieves good

performances as both methods generate fragmented

protected areas. The basic ACO method only has a

slight improvement of in utility value and compact-

ness compared with the DS method. It is noted that the

modified ACO model can generate more compact

patterns and much more efficient results than the basic

ACO model. This is because the neighborhood

pheromone diffusion strategy and the improved

selection strategy are adopted in the modified ACO

algorithm. The experiment indicates that the modified

ACO method is an efficient and effective optimization

technique for generating alternative protection.

Conclusion

Rapid changes in land use patterns, especially urban

expansion, will impose significant threats to natural

ecosystems. The establishment of protected areas

appears to be a good strategy for conserving our

ecosystems. Existing zoning methods applied to

protected areas are mostly qualitative and are highly

dependent on the knowledge of experts (Verdiell et al.

2005). Zoning a protected ecological area under

spatial constraint is belonging to the NP-hard problem

because of its huge combinatorial solution space. It is

impossible to solve such difficult problems within a

reasonable amount of time using a precise enumera-

tion method. Heuristic algorithms have the advantage

of speed and simplicity in solving combination

optimization problems.

ACO, a recently developed heuristic method, has

already been proven useful for providing a good

solution to complex spatial optimization problems (Li

et al. 2009a). This study demonstrates how ACO can

be integrated with remote sensing and GIS for the

zoning of protected ecological areas involving large

amounts of spatial data. This paper makes a number of

contributions in four aspects by adopting and modi-

fying the ACO-based algorithm:

1. The utility function by addressing the criteria of

ecological protection is incorporated into ACO

algorithm.

2. The neighborhood pheromone diffusion strategy

is designed to improve the compactness of

protection patterns. This is implemented by

incorporating a distance decay function into

pheromone updating.

3. An improved selection strategy is adopted to

accelerate the progress of sites selection for

artificial ants. This strategy makes the modified

ACO much more efficient than SA, GA and basic

ACO in forming protected areas.

4. To improve the optimization utility, a greedy

search strategy is proposed to determine the

optimal parameters of the ACO algorithm.

The modified ACO model was then applied to the

zoning of protected ecological areas in Dongguan, a

rapidly urbanized region, which is involved an area of

25,483 cells. The proposed model can find the near-

optimal solutions with a good convergence rate.

Furthermore, this model can generate protected areas

with the maximum ecological suitability value and

compact pattern. This indicates that the modified ACO

method is an efficient and effective optimization

technique for generating optimal protections.

The proposed method is compared with other

zoning methods, such as SA, GA, IR, basic ACO, and

DS. The comparison indicates that the modified ACO

method can yield much better performance than other

zoning methods. It is found that modified ACO can

improve the compactness over SA, GA, IR, basic

ACO and DS by 5.22, 1.02, 14.43, 30.37 and 34.07%,

respectively. Modified ACO also has the improve-

ment of the total utility over SA, GA, IR, basic ACO

and DS by 2.33, 0.44, 5.60, 11.03 and 12.83%,

respectively. In addition, Modified ACO is much

more efficient than SA, GA and the basic ACO

method, the computation time of modified ACO, SA

and basic ACO are 119, 3383, 864 and 1558 s,

respectively. Although GA may have close optimiza-

tion results with modified ACO, the computation time

of modified ACO is only 13.77% of that of GA.

There are some limitations in using the modified

ACO model in zoning protection. First, the movement

of the ant is a random walk in the proposed model,

without constrains or barriers. In practical protection

design, some barriers, like major highways or large
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rivers, should be excluded from protection areas.

Second, the optimization model is static. However,

urban dynamics have significant effects on spatial

optimization. Hence, the optimization model should

use the dynamic urban patterns as inputs during the

planning period. In future work, this ACO model will

be integrated with an urban cellular automaton for the

exploration of protection scenarios under land-use

dynamics.

Although the present study only demonstrates how

the ACO-based zoning model is applied to generate

protected ecological areas, by altering the objective

functions, the model can be applied to other applica-

tion, such as environmental planning, reserve selec-

tion, resource management and farmland protection.
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